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Atomistic spin dynamics of the Cu-Mn spin-glass alloy
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We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical
spin-glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows
a sudden quench of the system to the low-temperature phase. The system is modeled by a Heisenberg Hamil-
tonian where the Heisenberg interaction parameters are calculated by means of first-principles density-
functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the
atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the
equations of motion and the system size. For large damping and large system sizes, we observe the typical

aging regime.
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I. INTRODUCTION

Spin glasses exhibit exotic dynamical properties such as
aging, memory, and rejuvenation, which have triggered a lot
of research in the past.?> The interest in dynamics in these
systems is mainly motivated by the fact that practically only
out-of-equilibrium properties of spin glasses can be observed
in experiments. Peculiarities in the dynamical behavior are
often related to a complex nature of the phase space and the
lack of ergodicity in spin-glass systems.? In particular, relax-
ation toward equilibrium is not characterized by a single time
scale but rather by a broad spectrum of relaxation times lead-
ing to a nontrivial evolution of measurable quantities, such
as, e.g., magnetization.

An aging experiment is an elegant way to reveal the mul-
tiscale nature of the spin-glass dynamics.* A system is pre-
pared by quenching from high temperatures to a given tem-
perature T and perturbing the system in some way, usually by
switching on an external magnetic field. A measurement of
the time evolution of the magnetization is performed after a
certain time, t,,, has passed since the system preparation. For
temperatures 7 below the spin-glass transition temperature
T,, relaxation of the magnetization toward the equilibrium
value shows a strong dependence on the waiting time, f,,. A
number of phenomenological models have been proposed to
explain this behavior, among which are the well-known
droplet model® and a class of hierarchical models.5~'® How-
ever, scaling laws resulting from these studies do not allow
interpretation of experimental results unambiguously since
this would require an access to asymptotic regimes of relax-
ation and hence enormously large time scales. Moreover, dif-
ferent, sometimes even contradicting, models give rise to the
same scaling laws, discrediting their predictions. Studying
generic models seems therefore to be a more promising way
to elucidate mechanisms underlying spin-glass dynamics.

The microscopic structure of disordered magnetic materi-
als can, in general, be rather complicated (such as in amor-
phous spin glasses) but many important features of a spin-
glass behavior are captured in a model proposed by Edwards
and Anderson!! and its various extensions (hereafter referred
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to as “EA models”). This class of models has been studied
extensively and, in particular, much attention has been paid
to their nonequilibrium behavior.'>?° These numerical stud-
ies have shown that the dynamical behavior of the correla-
tion function is very similar to that of the magnetization
(related to the correlation function via the fluctuation-
dissipation theorem in equilibrium) in experiments. In par-
ticular, the two-stage relaxation depending on the waiting
time is reproduced in the simulations. Also, effects of spatial
inhomogeneity have been shown to play role in spin-glass
dynamics.?!-2*

Originally, the EA model and its extensions were intended
to reflect the basic ingredients of spin-glass systems, namely,
frustration and disorder. It is, however, appealing to study
models that rely on the structure of real spin-glass materials
because this kind of models may present a good framework
in investigating materials specific properties of spin-glass al-
loys. First steps in this direction were made in early works of
Walstedt and Walker?>>?6 or more recent works of Matsubara
and Iguchi,’’ in which equilibrium properties of a site-
diluted model with  Ruderman-Kittel-Kasuya-Yosida
(RKKY) interactions were studied.

Here we attempt to provide a parameter free model whose
dynamics is self-consistently described by atomistic spin dy-
namics equations with only one external parameter charac-
terizing magnetic damping. We study the spin-glass dynam-
ics of the CugyMn,, alloy by modeling it with a random-site
Heisenberg Hamiltonian,

H=_2JijCiiji‘mj, (1)
ij

where m; represent vector magnetic moments, and c; are the
occupation numbers of the magnetic atoms (c; is equal to one
if a site is occupied by a Mn atom and zero otherwise). The
exchange parameters, J;;, are calculated accurately within the
density-functional theory (DFT) approach, which means that
all interatomic exchange parameters and magnetic moments
are calculated in a materials specific fashion. Hamiltonian (1)
is suitable only for an ideal alloy without impurities, in
which anisotropy is negligible. On the other hand, real CuMn
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alloys exhibit macroscopic magnetic anisotropy in
experiments,”® which is probably due to the presence of
heavy nonmagnetic impurities.”® In the current work, we,
however, neglect the effect of anisotropy on dynamics to
simplify analysis of results. At the same time, we assume
that a mechanism providing magnetic damping is present in
the system. A usual tool for studying dynamics of spin
glasses is Monte Carlo simulations.'4-16:13:19.30 Sych an ap-
proach misses some details of local relaxations of spins in
their local fields. The influence of the finite rate of these local
relaxations on dynamics can, in general, be investigated by
solving the Langevin dynamics equations directly. As a mat-
ter of fact, as will be shown below, motion of individual
spins can have a rather strong impact on the aging behavior
of the system.

In Sec. II, we introduce definitions used throughout the
paper and describe briefly the way aging is observed in ex-
periments. In Sec. III, governing equations for the atomistic
spin dynamics are given along with some details on the
implementation. Results of the numerical simulations of the
CuMn alloy and Heisenberg EA model are presented in Sec.
IV. The focus is on the influence of damping on the spin
dynamics.

II. DEFINITIONS AND THEORY

In a typical aging experiment, a system is quenched in
zero field from high temperatures to a temperature below 7.
Then, the system is aged during a waiting time ¢,, a small
constant field % is applied, and time dependence of the mag-
netization M(r) or susceptibility x(1)=M(t)/h is observed. A
relaxation process after the quench can be associated with
three phases: (1) an initial relaxation toward a local quasi-
equilibrium state, (2) aging dynamics, and (3) global equili-
bration. The latter is achievable only for systems of finite
size N (the number of magnetic sites) within a time greater
than the ergodic time 7, ~exp(N). Although equilibration is
of little interest in an experiment, it must be taken into ac-
count in numerical simulations when one deals with rela-
tively small systems.

In numerical simulations, it is convenient to work with the
autocorrelation function,

C(tw +1, tw) = ]%/E [mi([w) ! mi(tw + t)]av’ (2)

where [---],, stands for configurational averaging, i.e., aver-
aging over independent runs with randomly generated atomic
distributions {c;}. In the quasiequilibrium phase, when the
conditions for the fluctuation-dissipation theorem (FDT) are
fulfilled, the autocorrelation is related to the response
function,?

19C(t, +1.t,)

T ®)

R(t, +t,t,)=—
Within linear response, the (thermoremanent) magnetiza-
tion and susceptibility can be found in the following way:

t,
M(t, +1,t,,) =hf di'R(t,, + t,t"), (4)
0
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ty o,
X(wvtw) — f df/R([W,[/)elw(t —tw)’ (5)
0

where & is a small applied magnetic field in a corresponding
thermoremanent magnetization experiment. In quasiequilib-
rium, the relaxation of observables does not depend on f¢,,
and a relation between the magnetization and the autocorre-
lation function amounts to

M) =M= ZCol0) ©)

where Ceq(1)=C(t,,+1,t,) in a t,-independent regime. In a
nonequilibrium situation, when the FDT is violated, different
stages of the autocorrelation relaxation can be illustrated by
the relaxation rate function defined as

A v, )

S(t, +t,t,) =—
(2, ) TIns

The relaxation rate peaks at a time 7, of the order of the age
of the system, i.e., f,~1,,.

Spin dynamics of a spin glass is essentially nonequilib-
rium, and the aging behavior in particular implies that the
evolution of the autocorrelation function is strongly depen-
dent on the waiting time, i.e., time-translation invariance is
violated. However, under certain circumstances or during
certain time intervals, a condition of time-translation invari-
ance, C(t,,+1,1,,)=C(t), holds, and the relaxation of the sys-
tem is said to proceed in the quasiequilibrium regime. This
assertion can be considered as a definition of a quasiequilib-
rium state.

After being prepared at a temperature 7, the system tends
to an equilibrium state. This state can be characterized by a
space correlation function that for spin glasses is calculated
in the following way:

GR) =+ S [ mip) ~m) - (mu) L (8)

Above the transition temperature for sufficiently large R, the
spatial correlation is given by

G(R) ~ R™""u(R/¢), 9)

where d is the dimension of the system, 7 and ¢ are a critical
exponent and the correlation length, respectively, and u(x) is
a scaling function which decays to zero for R/ &— . In the
macroscopic limit, the correlation length £ is finite above T,
but diverges with £~ ¢€” as T, is approached from above,
where €=(T-T,)/T, is the reduced temperature and v is a
critical exponent.

II1. DESCRIPTION OF METHOD

Generally, equations of motion for the Mn spins in a di-
lute CuMn alloy involve coupling of the spins with an effec-
tive field produced by the conduction-electron bath. Since
the effective field is in turn induced by other spins, this cou-
pling becomes a long-range exchange interaction between
spins.’! However, if spin-orbit coupling is taken into ac-
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count, additional damping of the spin motion is introduced,
which can be described by a phenomenological Landau-
Lifshitz-Gilbert (LLG) term in the equations of motion.??

Our simulations are performed using the atomic spin dy-
namics (ASD) package? based on an atomistic approach for
spin dynamics. We use a parametrization of the interatomic
exchange part of the Hamiltonian in the form of Eq. (1). The
effect of temperature is modeled by Langevin dynamics. The
LLG damping is characterized by a damping parameter «,
which is the only parameter in our simulations not obtained
from DFT calculations.

The microscopic equations of motion for the atomic mo-
ments, m;, in an effective field, B;, are expressed as follows:

dm;

==X [B+bi(n)] - yom; X (m; X [B, +b,(1)]).

(10)

In this expression v is the electron gyromagnetic ratio and
b,(r) is a stochastic magnetic field with a Gaussian distribu-
tion. The magnitude of that field is related to the damping
parameter, «, allowing the system to eventually reach ther-
mal equilibrium.

The effective field, B;, on a site 7 is calculated from

B i (11)
i=~ om,’
where for H we use the classical Heisenberg Hamiltonian
defined by Eq. (1). We use the Heuns method (for details, see
Ref. 33) with a time step size of 0.01 fs for solving the
stochastic differential equations. Most of the calculations are
performed up to a time =70 ps.

IV. LANGEVIN SPIN DYNAMICS OF A HEISENBERG
SPIN GLASS

A. Spin dynamics of CuMn

Spin dynamic simulations are performed for the CuMn
alloy with 20% of magnetic atoms (Mn). The system is de-
scribed by the Heisenberg Hamiltonian with spins (magnetic
atoms) distributed over the fcc lattice. The magnetic ex-
change (for the Heisenberg Hamiltonian) parameters are ob-
tained by means of the screened generalized perturbation
method (Ref. 34) implemented within the exact muffin-tin
orbital (Ref. 35) scheme. The coherent-potential approxima-
tion and disordered local moments are used to treat the dis-
ordered CuMn alloy in the paramagnetic state properly. Pre-
liminary Monte Carlo simulations showed that with this
model and for 20% Mn, critical slowing down occurs close
to the experimental freezing temperature, T,, measured to
equal approximately 90 K.3® However, no reliable estimation
of the transition temperature has been done in this work but
we assume that the temperature of 10 K, at which most cal-
culations are performed, is deep below the transition tem-
perature, which is confirmed by dynamical simulations. In
contrast to the EA model, where assumptions are made that
bonds between atomic spins are random and the magnetic
sites are ordered, we have used interatomic exchange param-
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FIG. 1. Autocorrelation C(#,,+1,t,,) calculated for CuMn after a
quench from completely random spin orientations to 7=10 K with
damping @=0.01. The autocorrelation is presented (from left to
right in the figure) for the logarithmically spaced waiting times
t,=0, 1.56X10%, 3.13X10%, 6.25X10%, 125X 103, 2.5X10%
5103 1x10% and 2 X 10* fs.

eters between the Mn atoms calculated from first-principles
theory while occupations of atomic sites have been randomly
generated. The dependence of the exchange parameters on
distance is calculated and observed to follow an oscillatory
RKKY-like form. Unlike the original RKKY theory, the an-
gular dependence of the interactions is furthermore involved
naturally in the calculations, reflecting crystallographic prop-
erties of the underlying lattice. The exchange interactions are
assumed to be independent of the local environment, which
is motivated by first-principles calculations that show an in-
significant variation in the interactions in the random alloy
compared to the ordered one. At the same time, the interac-
tions obtained from the calculations accurately reproduce the
magnetic short-range order observed in experiments.’” Simu-
lations are performed on systems containing 32 X 32 X 32 el-
ementary cubic cells. We simulate the relaxation process fol-
lowing a quench from completely random spin orientations
to 10 K. Averaging is performed over ten random-alloy con-
figurations with fixed interatomic exchange parameters.

The main concern of the current work is to investigate the
influence of damping on the aging behavior and on spin re-
laxation in general. First, let us consider two limiting cases:
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FIG. 2. Same as Fig. 1 but with damping a=0.0316.
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FIG. 3. Same as Fig. 1 but with damping «=0.1.

a=0 and a=2. The first case is trivial and corresponds to an
utterly deterministic evolution with the total energy con-
served. We can call this a “microcanonical dynamics” for
brevity. Since there is no coupling to a heat bath, the system
will never reach equilibrium in this type of dynamics. In case
of the infinite damping parameter, on the other hand, relax-
ation of a spin to equilibrium with respect to its local mag-
netic field occurs instantaneously, and spin dynamics be-
comes equivalent to the dynamics of the heat-bath Monte
Carlo method.*® For intermediate values of the damping pa-
rameter, we expect a system to cross over from the initial
off-equilibrium dynamics to the regime of relaxation toward
a (quasi)equilibrium state. The duration of the crossover
must be dependent on the damping parameter.

In Figs. 1-4 we show the spin-glass dynamics of CuMn
for four different damping parameters, a
=0.01,0.0316,0.1,0.316, respectively. We plot the autocor-
relation function for logarithmically spaced waiting times.
Note that time is given in femtoseconds but the time step is
0.01 fs. In all four cases the autocorrelation for 7,,=0 illus-
trates the initial dynamics of the system right after the
quench. The behavior at short times (<500 fs) is similar
for all values of « and is shown in Fig. 5 in logarithmic-
linear scale. The evolution of the autocorrelation function
can be described here as a sum of two exponents followed by
a slower-than-exponential decay at larger times. That is for
t=200 fs, we have

L B L1 I AR
1 t,=5 ps £, =10 ps t =20 ps

=]
=3
I

e
=N
I

<
~
I

=]
NS}
I

=156 fs t =313 fs t =625fs ]

Autocorrelation, C(t +t,t )

10 10’ 010 10° 10
Observation time (fs)

5

FIG. 4. Same as Fig. 1 but with damping a=0.316.
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FIG. 5. (Color online) Autocorrelation C(z,z,,=0) for four val-
ues of the damping parameter: a=0.01 (circles), «=0.0316 (boxes),
a=0.1 (triangles), and @=0.316 (crosses). The dashed line is a lin-
ear fit to the points for 10 fs=r=40 fs; the slope is equal to 1/ 7
of Eq. (12). The slope of the solid lines corresponds to the damping
relaxation rate 1/ 7, in Eq. (12).

C(1,0) = (1 =A™ + Ae™"™, (12)

where the value of A can be extracted from the crossing point
of the straight lines corresponding to the second exponent:
A=0.32%+0.02. The bump in Figs. 1-4 on the curves for ¢,
=0 corresponds to the second term in Eq. (12). The initial
slope of the curves, 1/7, is independent of damping (see
Fig. 5) and temperature (data not shown) and depends only
on the details of the Hamiltonian and initial spin distribution.
When the initial distribution is random, as is the case in our
simulations, the drop of the autocorrelation is dominated by
a strong precessional motion of the atomic spins in rapidly
varying effective exchange fields. As the directions of the
effective fields are initially oriented in a completely random
fashion, the angle between the atomic spin and its effective
field is on average large, resulting in a large precessional
torque on the atomic spins. The system gradually relaxes by
means of a damping torque on each atomic spin, with the
energy of the system dropping down from a high value of the
random spin configuration (“high-temperature” phase) to a
value close to the average energy for 7=10 K.

A subsequent decay of the autocorrelation is associated
with equilibration of spins in their local fields. Clearly, the
rate of the relaxation, 1/7,, depends strongly on the value of
the damping parameter and for this reason we refer to it as
“the damping relaxation.” As the rate 1/7, diminishes with
increasing «, the initial damping relaxation becomes more
difficult to identify. As seen in Fig. 5 from the evolution of
the autocorrelation for a=0.316, the crossover from the ini-
tial stage to a nonexponential decay is rather smooth and the
relaxation due to damping is indistinguishable.

The rate of the damping relaxation affects the behavior of
the autocorrelation function for waiting times much larger
than the value of 7,. From Fig. 1 one can see that for «
=0.01 the curves fall on top of each other for waiting times
up to #,=625 fs. This implies that, up to this moment, the
decay of the autocorrelation function is time-translation in-
variant. In fact, it seems that with this value of the damping
parameter, the system never enters the aging regime and the
initial relaxation phase crosses over directly to relaxation to
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FIG. 6. The calculated spin-spin correlation function, (m;-m;),
for @=0.01 (upper panel) and @=0.1 (lower panel). The correlation
function is plotted for four logarithmically spaced waiting times.
For a=0.1, all four curves fall essentially on top of each other.

the global equilibrium for #,>5 fs. On the other hand, at
smaller values of 7,, the aging behavior recovers (see Figs. 3
and 4) and the spin dynamics becomes similar to that in the
case of infinite damping. This implies that the strength of
damping is determined by the ratio of the time scale 7, of the
damping relaxation and the characteristic time of detuning of
local fields due to the motion of neighboring spins contrib-
uting to these local fields.

To determine to what extent the system has equilibrated,
one can look at the evolution of the spin-spin correlation
function g(r;;)=(m;-m;). In Fig. 6 we plot g(r;;) as a func-
tion of the distance |rf between the spins for different wait-

I

ing times of the systejm. The correlation function is plotted
both for @=0.01 (upper panel) and @=0.1 (lower panel). As
expected from the autocorrelation, g(r;;) is seen to evolve
faster the larger the damping parameter. It means that for
sufficiently strong damping the system reaches the quasi-
equilibrium phase fast enough for the aging regime to estab-
lish.

The nonequilibrium behavior seen at small waiting times
for small damping parameter values can be detected at the
microscopic level by observing the trajectories of randomly
selected spins. In Fig. 7 we plot trajectories of a typical
atomic spin evolving during 100 fs (corresponding to a short-
time scale) for «=0.01 and «a=0.1, and for two different
waiting times. The upper panel shows the trajectory for «
=0.01 after a waiting time of 1.25 ps. There is a large degree
of precessional motion of the atomic spin, confirming the
conclusions drawn from the behavior of the autocorrelation
that the system is still in the initial relaxation phase at this
waiting time. The middle panel shows the same system after
a waiting time of 5 ps, showing an atomic spin with a much
more stable spin direction. The spin is now either in equilib-
rium or on the verge of entering equilibrium although spin
motion is much more pronounced here than in the aging
regime for the system with @=0.1. The lower panel shows
the trajectory of an atomic spin for a=0.1 at a waiting time
of 1.25 ps. The system is in the aging regime here, as seen in
Fig. 3, and the atomic spin direction is stable on a time scale
of 100 fs.
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FIG. 7. The trajectory for one typical atomic spin at f,
=1.25 ps for a=0.01 (upper panel), at #,=5 ps for @=0.01
(middle panel), and at ¢,,=1.25 ps for @=0.1 (lower panel).

In the aging regime, the autocorrelation is characterized
by an initial reduction in the autocorrelation on to a plateau,
similar to what is seen for systems in equilibrium. A plateau
is clearly seen in Figs. 1-4 for relatively large waiting times.
The position of the plateau depends on temperature and is
related to the spin-glass order parameter. More precisely,

lim lim C(z, +1,1,) = qga (13)
—0 [H’—}CX)
in the macroscopic limit, and the Edwards-Anderson order
parameter, gg,, is defined (again in the macroscopic limit) as

o= )il (149

where (- - ) stands for thermal averaging. Following the pla-
teau, or the quasiequilibrium phase, is the aging phase. The
crossover from one phase to another occurs at a time, f,,
when a sudden drop of the autocorrelation takes place. The
time f; can be best identified as the maximum of the relax-
ation rate defined by Eq. (7).

The relaxation rate for a=0.1 and for a few waiting times
is plotted in Fig. 8. The relaxation rate is obtained by calcu-
lating the derivative with respect to In ¢ of the autocorrela-
tion. Note that the poorly defined peaks at the end of the
observation time (1~ 10* fs) are artifacts of a smearing
scheme used when calculating the derivative and which
breaks down close to the edge of the observation interval. In
the inset we show the position of the peak relaxation rate, or
t,, with respect to the waiting time. As one can see, f, is
slightly larger than 7, which is expected for the aging re-
gime in a spin-glass system.>* However, the total time win-
dow used in the simulations does not allow inferring of any
definite form of the dependence.

B. Spin dynamics of the Heisenberg EA model for weak
damping

To investigate even further spin dynamics for small values
of @, we have performed simulations of the Heisenberg EA
model for @=0.01 and for different lattice sizes. The simu-
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FIG. 8. (Color online) Relaxation rate, S(¢), for the simulation in
Fig. 3 with @=0.1. The relaxation rate is plotted for the logarithmi-
cally spaced waiting times 7,=0, 1.56X10% 3.13X102, 6.25
X 102, 1.25% 103, 2.5 10%, and 5% 10® fs. The inset shows the
relationship between the waiting time and the peak of the relaxation
rate for the waiting times 7,=1.56 X 102, 3.13X 102, 6.25X 102,
1.25X 103, and 2.5X 103 fs. For the last waiting time the largest
peak seems to be a numerical artifact. Instead the second largest
peak was chosen as input for the inset.

lations have been performed on a cubic lattice of different
sizes LXLXL, where L=4, 8, and 16, and with random
nearest-neighbor exchange interactions drawn from a Gauss-
ian distribution with a standard deviation of 1 mRy. This is
typically the order of exchange interactions in CuMn alloys.
The freezing temperature, T, is expected to be 25 K for this
model (0.16 within the dimensionless model).*"

In Fig. 9 we show the calculated autocorrelation for a
simulation of the Edwards-Anderson model. The simulated
process is a relaxation following a quench from completely
random spin orientations to 10 K (0.063 within the standard
dimensionless model). The autocorrelation with respect to
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FIG. 9. (Color online) Autocorrelation C(t,,+1,1,,) calculated for
the Edwards-Anderson model after a quench from completely ran-
dom spin orientations to 7=10 K with a=0.01. Different line
styles and colors signify different system sizes: 4 X4 X4 (dotted,
red), 8 X 8 X 8 (dashed, blue), and 16X 16X 16 (full, black). For
each system size the autocorrelation is presented (from left to right
in the figure) for the logarithmically spaced waiting times t,,=0,
1.25%x10% 2.5Xx10% 5% 10, 1 X 10% and 2 X 10* fs.
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observation time is plotted for several logarithmically spaced
waiting times. As in the CuMn simulations, averaging was
performed over ten different bond realizations, and for each
bond configuration, ten simulations with different initial ran-
dom spin distributions and different random number se-
quences in the Langevin equations have been done.

There are three sets of curves in Fig. 9 for three different
system sizes. As seen in the figure, for the choice of the
damping parameter («=0.01) and system sizes (L=4,8,16),
the aging regime is very short or even nonpresent in these
simulations. The global equilibrium is reached very soon af-
ter the initial relaxation was accomplished. It is also worth
noting that there is a noticeable similarity between the wait-
ing time dependence of the autocorrelation function for the
16 X 16X 16 EA model (Fig. 9) and the 32X 32X 32 CuMn
alloy simulated with the same damping parameter (Fig. 1).
Moreover, comparing the curves corresponding to ¢,,=0, one
can see that the initial phase is independent of the system
size.

Typically, a spin-glass system enters the aging regime as
soon as local equilibrium conditions are being met. The dy-
namics proceeds by a rearrangement of the magnetic order
on a length scale corresponding to a time scale of the order
of the age of the system. In this particular simulation, a pure
aging regime cannot be identified as the system enters the
global equilibrium soon after the initial relaxation. In con-
trast to equilibrium, within the aging regime the autocorrela-
tion should depend on the waiting time and not on the system
size. For the largest four waiting times in Fig. 9, we see the
autocorrelation characterized by an initial reduction on to a
plateau followed by a large sudden reduction to zero for
different observation times depending on the size of the sys-
tem.

V. CONCLUSIONS

The investigation of spin dynamics based on the realistic
spin-glass model has been performed by solving the Lange-
vin equations of motion. The exchange parameters have been
calculated from first-principles DFT calculations while the
damping parameter has been varied to study the influence of
damping on the dynamics. In the first-principles theory no
assumptions are made concerning the magnetic moments or
interatomic exchange interactions; hence the calculated pa-
rameters of the model are materials specific. It is rewarding
to observe that our model reproduces essential features of
spin-glass systems. For instance, analogous studies on a dif-
ferent disordered system, namely, Mn-doped GaAs,*! re-
sulted in a different dynamical behavior although the geom-
etry of the magnetic subsystem (fcc sublattice) is the same as
in our model.

The simulations showed that, below the spin-freezing
temperature, 7,, the system exhibits the aging behavior for
sufficiently large values of the damping parameter, «. In this
case, the dynamics is very similar to that obtained from cor-
responding Monte Carlo simulations. For weak damping, we
find that the behavior is different and can be characterized by
two regimes for small and large waiting times, respectively.
For waiting times, t,,, below some certain value, the autocor-
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relation function does not depend on 1, (i.e., it is time-
translation invariant) and hence is the same as for ¢,,=0. For
waiting times above a certain limit, the autocorrelation is
also time-translation invariant but is characterized by a much
slower decay. The time-translation invariance of the autocor-
relation suggests that a system of finite size reaches equilib-
rium faster at weaker damping. As a result, it becomes clear
that spin dynamics inside moderately sized domains in spin
glasses can be strongly affected by damping.

A direct experimental observation of the effects of weak
damping described here may be hampered by the large dif-
ference in time scales accessible in the presented numerical
simulations and real-life experiments. However, this seems
to be not completely impossible, taking into account that
spin-echo experiments,*? with its ability to probe time scales
down to 10712 s (compared to 107'3 in our simulations), can
potentially shed light on the short-time behavior of spin-
glass systems. Besides, it follows from our studies that dy-
namics on even larger time scales may be modified because
of weak magnetic damping.

PHYSICAL REVIEW B 79, 024411 (2009)

Moreover, the similarity between our nonequilibrium re-
sults to those found in Monte Carlo studies using simpler
model Hamiltonians verifies the usefulness of those methods
in mimicking real spin glasses on short-time scales. This
hints that a corresponding agreement is valid on longer time
scales, and thus our results indirectly support the relevance
of simulations on “simple”” model systems using special pur-
pose computers®? that close the previously huge time scale
gap between the nonequilibrium dynamics probed in simula-
tions and experiments on real spin glasses.
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